John Morgan and Felix Várdy University of California, Berkeley

DO THE RIGHT THING. MIXED MOTIVES AND THE CONDORCET JURY THEOREM

Two Classic Questions

- Why Do People Vote in Large Elections?
- Are Elections a Good Way to Make Decisions?

This paper:

How does a realistic answer to first question affect the answer to the second?

Why do People Vote?

- To affect outcome of elections:
 - Instrumental Motives
- But... little chance of being decisive in large election. (Downs '57)
- Hence, little reason to vote
- Yet lots of people do vote...

Why do People Vote, Part 2

- Intrinsic reward to casting vote:Expressive Motives
 - Riker-Ordeshook's (1968) 'D' (duty).
 - But...most people also feel strongly about how they vote.
 - just show up & 'donkey vote' does not do! (Brennan-Buchanan, 1984)
- → Intrinsic reward from voting as it expresses identity, norms, party affiliation, etc.

Are Elections Good Way to Make Decisions?

- Yes
 - Condorcet (1785)
- Maybe
 - Condition on being decisive → Sincere voting not always equilibrium
 - Austen-Smith and Banks (1996)
- Absolutely!
 - Strategic voting no problem
 - Feddersen and Pesendorfer (1997, 1998)

Combining the Two Questions

- If voters have purely instrumental preferences
 - Elections work well if lots of voters show up
 - But no reason for lots of voters to show up

- If voters also have expressive preferences
 - Lots of people show up
 - But... do elections work?

Key Question:

• How well do elections work when voters have both instrumental and expressive preferences?

Trivial Answers

- If expression is merely duty to show up
 - Obvious that elections work well
- If expression also depends on vote cast, but is always aligned with information
 - Obvious that elections work well

What if, sometimes, conflicted between expressive preference and info?

United Auto Workers

- UAW is voting whether to strike.
 - You have info suggesting strike will be unsuccessful
- But what about...
 - Co-workers
 - Father
 - Principles
- You are conflicted!

What to do?

- In small election
 - Stakes are high
 - You might be decisive
 - → Vote with your head (i.e., instrumentally)
- But the UAW is large
 - Stakes are high
 - But you are unlikely to be decisive
 - Vote with your heart (i.e., expressively)

Are Elections Good Way to Make Decisions?

- Depends on:
 - Quality of information
 - Size of the electorate
 - Likelihood of conflict between the head and the heart

Preview: Two Lessons

- Even a little expressiveness is a lot different from no expressiveness
- More is not better:
 - Always a "Valley of Death"
 - Beware of the Cliff

Model

- Simplest model we could think of to highlight role of expressive preferences.
- Simple-majority election
- \bullet Two states, α and β , equally likely
- Two possible election outcomes A and B
 - Outcome A is best in α
 - Outcome B is best in β
- Two signals, a and b
 - Probability of correct signal is $r > \frac{1}{2}$
- n + 1 voters; n is even.

Preferences

- Instrumental
 - Everyone gains 1 util (xinstrumental weight) if the "right" outcome is chosen
- Expressive
 - Gain 1 util (xexpressive weight) if vote according to norm
 - Prior norms: Prob. ρ ≥ ½, a voter's norm is A
 - Malleability: Prob. q, norm adjusts (if needed) to be consistent with signal
- Weights
 - ε on expressive, 1ε on instrumental

Inner Conflict

- Two kinds of voters:
 - Unconflicted
 - Expressive norm and signal coincide
 - → Simply vote according to their type/signal
 - Conflicted
 - A types: A as expressive norm and signal b
 - B types: B as expressive norm and signal a
- → All action comes from conflicted types

Boring Benchmark

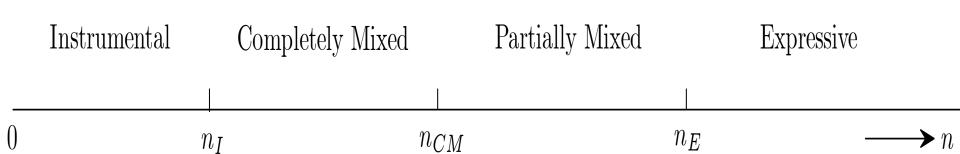
- If $\varepsilon = 0$, everyone votes according to signal
 - Information fully aggregates in limit
 - More is better
 - → Elections perform extremely well
- We study $\varepsilon > 0$.
 - (If uncomfortable with this, think of ε as really small. Say, 1/1000.)

Pure Strategy Equilibria

- Benefit of voting instrumentally
 (1 ε) { Pr [tie & correct] Pr [tie & wrong] }
- Cost if conflicted = ε
- If $n < n_l$ then instrumental voting is an equilibrium
- If $n > n_E$ then expressive voting is an equilibrium.
- Key point: Same voter votes differently in small v large elections

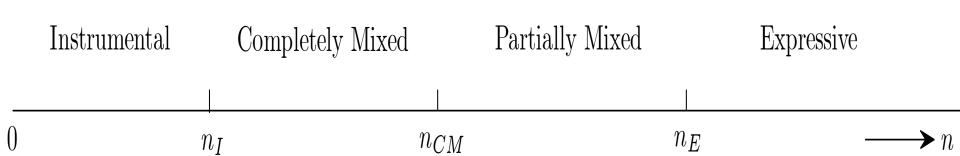
Instrumental v Expressive Voting

- How does n_l compare to n_E?
 Typically there is a gap between the two:
 - Example: r = 3/5, $\rho = q = \frac{3}{4}$, $\varepsilon = 1/1000$
 - $n_1 = 128$
 - $n_F = 5,862$
- What happens in between?


Instrumental n_E Expressive n_E n_E

The Gap

- Distinguish between:
 - High correlation: q > q*
 - Norms more malleable, i.e., affected by "facts"
 - Low correlation: q < q*
 - Norms less malleable; facts less likely to overturn them
- High correlation better behaved than low correlation.
 - Study high correlation first


Filling the Gap - High Correlation

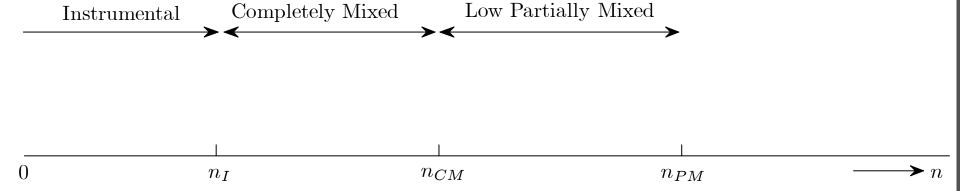
- Instrumental: $n \le n_l$
- Completely mixed: n_I < n ≤ n_{CM}
 - Conflicted voters mix between instrumental and expressive
- Partially mixed: n_{CM} < n < n_E
 - B types vote expressively, A types still mix
- Expressive: n ≥ n_E

Example - High Correlation

- $n_I = 128$,
- $n_{CM} = 162$,
- $n_F = 5,862$

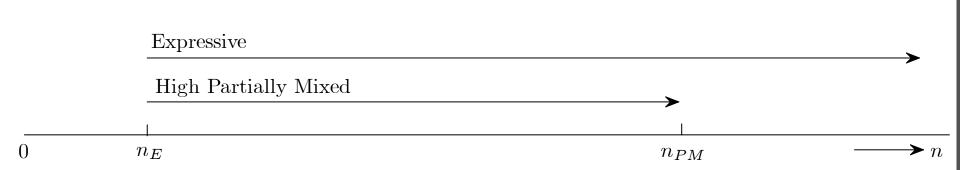
Results – High Correlation

For every n there is a unique equilibrium

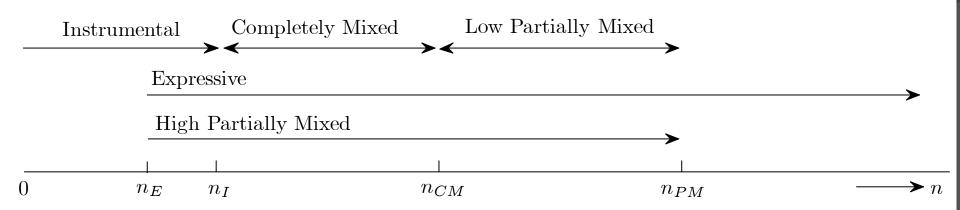

 Equilibrium moves smoothly from instrumental to expressive as n increases.

Filling the Gap – Low Correlation

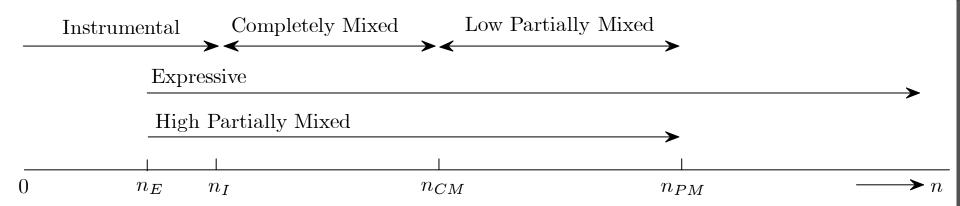
Equilibrium regions overlap


Instrumental

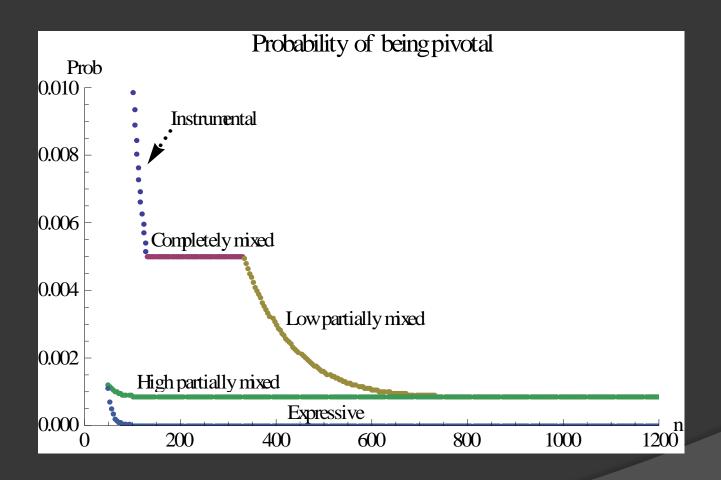
- E.g., Expressive & instrumental can coexist
- Two types of partially mixed equilibria
 - Start at n_{CM} and n_{F} , resp., converge and disappear at n_{pm}


Filling the Gap - Low Correlation

- Equilibrium regions overlap
 - E.g., Expressive & instrumental can coexist
- Two types of partially mixed equilibria
 - Start at n_{CM} and n_E , resp., converge and disappear at n_{PM}


Filling the Gap - Low Correlation

- Equilibrium regions overlap
 - E.g., Expressive & instrumental can coexist
- Two types of partially mixed equilibria
 - Start at n_{CM} and n_E , resp., converge and disappear at n_{PM}



Example - Low Correlation

- $n_I = 128$
- $n_{CM} = 330$
- $n_{PM} = 228,724$
- $n_F = 48$

Example - Pivotality

• At n_{PM} , Pr[Piv] = 0.08%; $10^{2027} > than when <math>\varepsilon = 0$

Results - Low Correlation

Multiple equilibria for some n

• The "best" equilibrium becomes more expressive as n increases, and falls off a cliff at n_{PM} .

Performance of Elections

Two different criteria:

- Selection accuracy, S
 - Prob. of electing the "right" candidate
- Welfare, W
 - per capita expected utility

Ranking Multiple Equilibria

Accuracy:

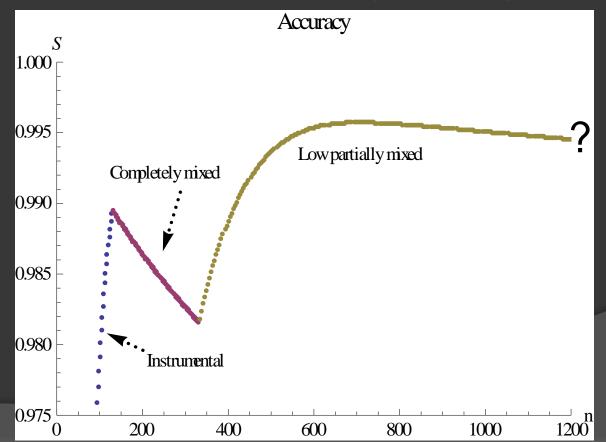
 For fixed n, coexisting equilibria can be ranked in terms of selection accuracy:

$$S \in \{S_I, S_{CM}, S_{LPM}\} > S_{HPM} > S_E$$

Welfare

- Multiple equilibria:
 - Welfare ranking is same as accuracy ranking:

$$W \in \{W_I, W_{CM}, W_{LPM}\} > W_{HPM} > W_E$$


- Change in n increases welfare W iff it increases accuracy S
- → Hence, focus on accuracy

Optimal Size of Electorate

- Are more voters better for accuracy?
 - When $\varepsilon = 0$, trivial: More is better.
 - When $\varepsilon > 0$, trade-off:
 - More voters -> more information
 - More voters → more expressive voting

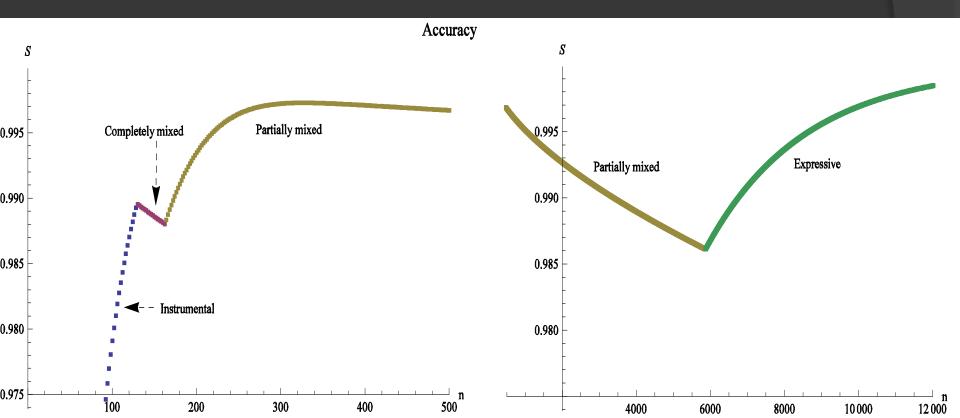
Optimal Size of Electorate-Part 2

- Trade-off not trivial
- What happens when n gets large?

Asymptotics

• Large elections fully aggregate information if and only if correlation is very high (i.e., $q > q_1 > q^*$).

 Otherwise, large elections no better than coin flip at selecting correct outcome

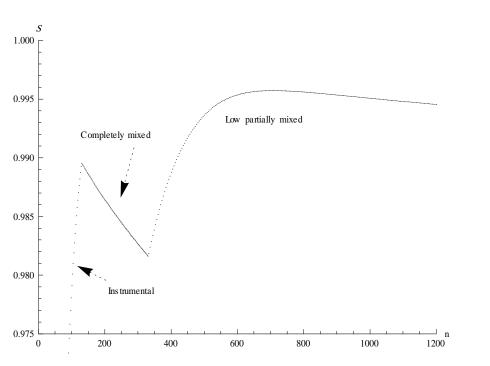

Finite *n* – Very High Correlation

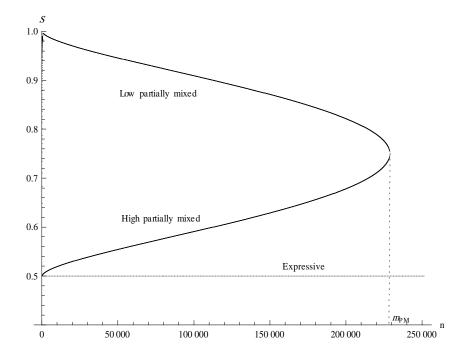
- S always rises in I region
- S always falls in CM region*
- Hump-shaped in PM region*
- S always rises in E region

→ Expanding size of electoral body may be bad idea, even under high correlation.

Example - Very High Correlation

- "Valley of Death," even if $q > q_1$
 - r = 3/5, $\rho = q = \frac{3}{4}$, $\varepsilon = 1/1000$
 - At n = 10,366, S reaches old max of n = 326


Finite *n* – Low Correlation


- S always rises in I region
- S always falls in CM region*
- Hump-shaped in LPM region*
- S always rises in HPM region
- S hump-shaped in E region

Example - Low Correlation

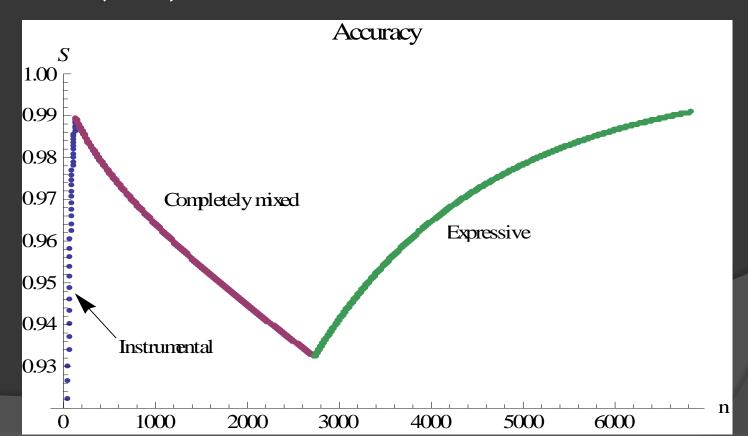
- \bullet Cliff at n_{PM}
 - r = 3/5, $\rho = \frac{3}{4}$, q = 1/7, $\varepsilon = 1/1000$ At $n_{PM} = 228,724$, S drops from 3/4 to 1/2

Accuracy

Two Lessons

- Even a little expressiveness is a lot different from no expressiveness
 - Equilibria
 - Info aggregation
- More is not better
 - Always a "Valley of Death"
 - Beware of the Cliff

Recent UK election...


- After Reform Act of 1832:
 - 720,000 voters chose 658 MPs:1100 voters per MP
- Today:
 - 45,000,000 voters choose 650 MPs:
 69,000 voters per MP
- Over the cliff?
- In any case, voters can indulge their expressive preferences more than before

S – Very High Correlation, $\rho = \frac{1}{2}$

- Valley of Death, even if $q > q_1 \& \rho = \frac{1}{2}$
 - r = 3/5, $\rho = 1/2$, $q = \frac{3}{4}$, $\varepsilon = 1/1000$: Only at n = 6,472, S reaches old max of n = 128

