Confidentiality and Sequencing in Bilateral Negotiations

Huseyin Yildirim Duke University

ESNIE - May, 2012

Many bargaining problems involve one buyer and several sellers:

```
Real Est. Dev. \longrightarrow Land Owners
```

Econ. Dept. \longrightarrow Multiple Faculty

Home-owner — Multiple Contractors

- In many applications, the buyer can choose between public and private negotiations.
 - Disney was very secret about purchases of Florida swamp land.
 - Duke was not as lucky in a small community.
- For government buyers, "sunshine" laws require transparency.

"[These laws] are the state and federal statutes requiring that government meetings, decisions and records be made available to the public."

- And sunshine laws have a bite.
- For instance, in July 2000, Motorola alleged that the state of Florida violated its own sunshine law by holding closed meetings with the rival Com-Net.

 Exceptions, however, apply. For instance, during real property acquisitions by the state's water management districts,

"...appraisal reports, offers, and counteroffers are confidential and exempt from the provisions of [sunshine law] until an option contract is executed." (Florida Statutes 373.139)

- The buyer can also choose the sequence of negotiations.
- For example, is it better to start with
 - the weaker or stronger seller.
 - the more or less valuable item, etc.?

Related Literature

Confidential Negotiations

Calzolari and Pavan (*JET*, 2006); Krasteva and Yildirim (*GEB*, 2012); Noe and Wang (*ReStud*, 2004); Taylor (*RAND*, 2004).

Buyer's Sequencing Preference

Cai (*JET*, 2000); Marx and Shaffer (*IJIO*, 2007); Krasteva and Yildirim (*RAND*, Forth.); Li (2010); Marshall and Merlo (*IER*, 2004); Moresi, Salop, and Sarafidis (2010); Xiao (2010).

Seller's Sequencing Preference

Arbatskaya (RAND, 2007); Marx and Shaffer (IJIO, 2010).

Model (w/ Perfect Complements)

Based on Krasteva and Yildirim (GEB, 2012)

- Three risk-neutral players: one buyer (b) and two sellers (s_i , i = 1, 2).
- Buyer's valuations are
 - V = 1 from a joint purchase,
 - $v_1 = v_2 = 0$ from each unit.
- $c_i = 0 \Longrightarrow efficient$ to purchase both.
- Bargaining over price, p_i:

$$\begin{cases} s_i, & \text{w/ prob.} & \alpha \\ b, & \text{w/ prob.} & 1 - \alpha. \end{cases}$$

Public vs. Private Negotiations

eXploding offers (i.e., pay-as-you-go)

• **Public.** $p_1(s_1) = 1 - \alpha$ and $p_2(s_2) = 1 \Longrightarrow$ efficient trade.

And, the buyer's expected payoff is:

$$\pi^{X}(b) = (1-\alpha)^{2} + \alpha(1-\alpha)[1 - (1-\alpha+0)] + (1-\alpha)\alpha[1 - (0+1)] + \alpha^{2}[1 - (1-\alpha+1)] = (1-\alpha)^{2}.$$

• **Private.** $p_1(s_1) = p_2(s_2) = \frac{1}{1+\alpha}$, and the buyer visits each seller w/prob. $\frac{1}{2}$.

⇒ efficient trade. And,

$$\overline{\pi}^X(b) = 1 - 2\alpha \frac{1}{1+\alpha} = \frac{1-\alpha}{1+\alpha} > (1-\alpha)^2 = \pi^X(b).$$

Public vs. Private Negotiations

Open-ended offers (i.e., decision at the end)

• **Public.** $p_1(s_1) = 1$ and $p_2(s_2) = 0 \Longrightarrow$ efficient trade.

And,

$$\pi^O(b) = (1 - \alpha)^2.$$

- Assume $\alpha < \frac{1}{2}$.
- **Private.** $p_1(s_1) = p_2(s_2) = 1 \Longrightarrow$ inefficient trade.

And,

$$\overline{\pi}^O(b) = (1 - \alpha)^2.$$

Implications

- Public neg. is efficient while private neg. can be inefficient.
- The buyer (weakly) prefers private neg.
- May explain the presence of "sunshine" laws.
- Extended return and cancellation policies, e.g., FTC's cooling-off rule may hinder efficiency.

Sellers' Incentives to Disclose

• Consider eXploding offers, and suppose sellers pre-commit to their disclosure policies.

$s_i \setminus s_j$	dis	dis
dis	$\alpha(1-\frac{\alpha}{2}); \alpha(1-\frac{\alpha}{2})$	α ; $\alpha(1-\alpha)$
dis	$\alpha(1-\alpha)$; α	$\alpha \frac{1}{1+\alpha}$; $\alpha \frac{1}{1+\alpha}$

• Unique $NE = (dis, dis) \Longrightarrow public neg.$

Strategic Sequencing

- Consider the sequence $s_i \rightarrow s_j$.
- Let $v_1 = v_2 = v < \frac{1}{2}$.
- Assume fully contingent price contracts.
- Then, the buyer and s_i can always conspire to leave 0 surplus to s_j .
- But how?

Equilibrium Prices

Proposition. Given the sequence $s_i \rightarrow s_j$, the following prices constitute a SPNE:

- On-equilibrium path:
 - efficient trade; 0 profit for s_j (similar to Aghion and Bolton (AER, 1987)).

$$p_i^{ij}(s_i) = 1 - (1 - \alpha_j)v \text{ and } p_j^{ij}(s_j) = 0$$

 $p_i^{ij}(b) = p_i^{ij}(b) = 0.$

- Off-equilibrium path:
 - likely below-cost pricing and "breakup" fee.

$$p_i^i(b) = -(1-v) \text{ and } p_i^i(s_i) = p_i^{-i}(s_i) = \alpha_i v.$$

Sequence Implication

1 The buyer receives expected payoff:

$$\pi_{ij}(b) = (1 - \alpha_i) + \alpha_i(1 - \alpha_j)v.$$

⇒ start with the *weaker* seller.

Non-contingent Prices

• The unique (equilibrium) prices are:

$$p_i^*(s_i) = 1 - v$$
 and $p_j^*(s_j|1 - v) = v$.

• The buyer's payoff is:

$$\pi_{ij}(b) = (1 - \alpha_i)(1 - \alpha_j) + \alpha_i(1 - \alpha_j)v + (1 - \alpha_i)\alpha_jv.$$

Indifference to the sequence!

Model (w/ Payoff Uncertainty)

Based on Krasteva and Yildirim (RAND, Forth.).

• V = 1 from a joint purchase.

•
$$v_i = \begin{cases} 0, & \text{w/ prob.} \quad q \\ \frac{1}{2}, & \text{w/ prob.} \quad 1 - q. \end{cases}$$

Equilibrium Prices

Proposition. Fix the sequence $s_i \rightarrow s_j$. In equilibrium, if s_i makes the offer for product i, then

$$\begin{pmatrix} (p_i^*(s_i), p_j^*(s_j|s_i)) = \begin{cases} & \left(1, \frac{1}{2}\right) & \text{if} & \alpha_j < \widehat{\alpha}(q) \\ & \left(\frac{1+q}{2}, \frac{1-q}{2}\right) & \text{if} & \alpha_j \geq \widehat{\alpha}(q) \text{ and } q > \frac{\sqrt{5}-1}{2} \\ & \left(\frac{1}{2}, \frac{1}{2}\right) & \text{if} & \alpha_j \geq \widehat{\alpha}(q) \text{ and } q \leq \frac{\sqrt{5}-1}{2}. \end{cases}$$

Efficiency and Indifference

Proposition. Equilibrium trade is efficient irrespective of the sequence if and only if $q \notin (\frac{1}{2}, 1)$, or equivalently $\widehat{\alpha}(q) = 0$. In addition, if $q \notin (\frac{1}{2}, 1)$, then the buyer is indifferent to the sequencing.

Strategic Sequencing

Proposition. Let $q \in (\frac{1}{2}, 1)$ and $\alpha_1 < \alpha_2$. Then,

 $\begin{cases} \text{ is indifferent to the sequence} & \text{if} \quad \alpha_1 < \alpha_2 < \widehat{\alpha}(\textbf{q}) \\ \text{ strictly prefers the sequence } s_1 \rightarrow s_2 & \text{if} \quad \alpha_1 < \widehat{\alpha}(\textbf{q}) \leq \alpha_2 \\ \text{ strictly prefers the sequence } s_2 \rightarrow s_1 & \text{if} \quad \widehat{\alpha}(\textbf{q}) \leq \alpha_1 < \alpha_2. \end{cases}$

Raising Own Cost of Acquisition

Minimum Purchase Price

Proposition. Let $q_1 = q_2 = q$ and $\alpha_1 = \alpha_2 = \alpha$. Suppose that prior to negotiations, the buyer commits to pay at least $w \ge 0$ for each unit she purchases. Then,

- for $q \in (\frac{1}{2}, 1)$, there exists $\alpha^c(q) \in (0, \widehat{\alpha}(q))$ such that the buyer optimally sets w > 0 for all $\alpha \in [\alpha^c(q), \widehat{\alpha}(q))$;
- for $q \notin (\frac{1}{2}, 1)$, the buyer optimally sets w = 0 for all α .

Raising Own Cost of Acquisition

Strategic Outsourcing

Proposition. Let $\alpha_1=\alpha_2=\alpha$, and suppose that the buyer can costlessly make input 1 in-house, which has no stand-alone value, $q_1=1$, but she needs to outsource input 2 with $q_2\in (\frac{\sqrt{5}-1}{2},1)$. Then, the buyer is strictly better off outsourcing both inputs than only input 2 if and only if $\alpha>\frac{1+q_2^2}{1+q_2}$.

Implications

Two sets of observations.

- Efficiency vs. Sequencing
 - Efficient trade implies indifference to sequencing
 - Under Inefficient trade, the sequence is important.
- Raising own cost of acquisition
 - Setting a minimum purchase price
 - Outsourcing even when available in-house.