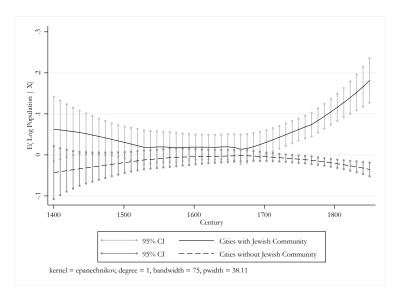
Jewish Communities and City Growth in Preindustrial Europe

Noel D. Johnson (GMU) & Mark Koyama (GMU)

Presentation for IOEA, Corsica

May 18, 2016


RESEARCH QUESTION

- Various literatures suggest economically productive minorities (e.g. Huguenots, Quakers, Jews, Chinese, Lebanese) can be a source of economic growth (Weber, 1922, 1968; Sombart, 1962, 1911; Braudel, 1979, 1982; Hornung, 2014).
- Was this true for Jewish communities in pre-industrial Europe?
- We show the following:
 - Cities with Jewish communities grew faster than comparable cities without Jewish communities in Europe between 1400 and 1850.
 - 2 This growth advantage accelerated after 1600.
 - We identify the causal effect of Jewish communities on city growth by creating an IV based on a spatial model of the Jewish network across Europe and exploiting 'nearby' expulsions.
 - We provide evidence that cities with Jewish communities benefited more from market access on the intensive margin, but not on the extensive margin. Jewish communities were better able to translate greater potential market density into economic gains.
 - We show that cities which emancipated Jewish communities grew faster.

URBAN POPULATIONS AND ECONOMIC DEVELOPMENT

- City populations widely used in literature on preindustrial development (De Long and Shleifer, 1993; Dittmar, 2011; Nunn and Qian, 2011; Bosker et al., 2013; Dincecco and Onorato, 2015).
- European economy was Malthusian in the preindustrial period and urban population data are an important source of disaggregated information on technological change and productivity in commerce and agriculture (de Vries, 1976; Ashraf and Galor, 2011)
- Cities were were disease ridden and unhealthy. Had to attract migrants by offering higher wages. Increases in productive capacity were reflected in the growth of city populations (Braudel, 1979, 1982; Bairoch, 1988).
- Cities are often the appropriate unit of analysis for studying institutions. For example, nation states didn't exist for much of the period we study.
- Given recent advances in geospatial analysis and the accompanying increases in data availability, it's increasingly possible to do empirical studies using cities as the unit of analysis.

JEWISH VS. NON-JEWISH CITY GROWTH: EXTENDED SAMPLE (CONDITIONAL)

THE ECONOMIC ROLE OF JEWS IN EARLY-MODERN EUROPE

- Across Europe Jews were a small proportion of the population of the countries where they lived.
- Spatial distribution highly heterogenous. Spatial Distribution
- Jews faced a range of discriminatory rules that shaped the occupations within which they worked. Extent of discrimination varied across time and place. (see *inter allia* Baron, 1967a,b, 1975; Koyama, 2010). Rent Seeking
- Concentrated in long-distance trade, medicine, retailing, wine trade, and moneylending (e.g. Greif, 2006; Chazan, 2006, 2010)

Judengasse – Frankfurt Am Main

THE ECONOMIC ROLE OF JEWS IN EARLY-MODERN EUROPE

What determined Jewish settlement? According to the historian Jacob Katz:

'There is no rational explanation in economic or other terms for the presence or absence of Jews in particular localities. In Fürth there was a thriving Jewish community, but in neighboring Nuremberg a Jew could appear only in daytime and only in the company of a local inhabitant. Halberstadt and Magdeburg, both important centers of commerce and administration and Prussian dominated since the middle of the seventeenth century, differ greatly in their attitude to Jews. Halberstadt harbored one of the earliest Jewish communities uninterruptedly since the Middle Ages. In Magdeburg, Jews struggled for mere admission even during the comparatively tolerant rule of the Prussian kings (Katz, 1974, 12).'

But clearly Jews did not settle randomly across Europe. In particular, the probability of a Jewish settlement was higher if there were other Jewish settlements nearby. This could be due to trade, cultural linkages, or simply 'dispersion'. We will exploit this fact in our identification strategy.

HYPOTHESES

Why would we expect Jewish settlement to be associated with economic growth?

• Human capital

 e.g. Botticini and Eckstein (2005, 2007, 2012); also Acemoglu, Hassan and Robinson (2011); but Abramitzky and Halaburda (2014) suggests this may be a composition affect (at least in the Pale of Settlement).

Qultural Transmission of Pro-Market Values

 Recent literature emphasizes the importance of cultural values (Greif, 2006; Tabellini, 2008; Mokyr, 2009; McCloskey, 2010). Horizontal transmission rather than vertical.

Market Integration

 Jewish merchants and traders shared a common culture (sometimes a common language) and played a role integrating Europe's commercial and trading networks.

THE ECONOMIC ROLE OF JEWS IN EARLY-MODERN EUROPE: HUMAN CAPITAL

- Botticini and Eckstein (2012): Jews in medieval Europe had higher levels of human capital than Christians.
- Kuznets (1960): this the case in the late 19th century.
- Acemoglu, Hassan and Robinson (2011): this held true in Eastern Europe before the Holocaust.
- Today high levels of human capital are associated with city growth (Glaeser and Mare, 2001; Davis and Dingel, 2012, 2014).

THE ECONOMIC ROLE OF JEWS IN EARLY-MODERN EUROPE: PRO-MARKET VALUES

- Weber (1930) associates Jewish values with Puritan values.
- Ultimately dismisses role of Jews as restricted to 'pariah capitalism'.
- Weber's argument criticized by Sombart (1962, 1911) who argues Jews played crucial role in early stages of modern capitalism.
- However, Sombart's ideas are contaminated by anti-Semitism.

Quentin Massys - The Money Lenders

THE ECONOMIC ROLE OF JEWS IN EARLY-MODERN EUROPE: TRADING NETWORKS

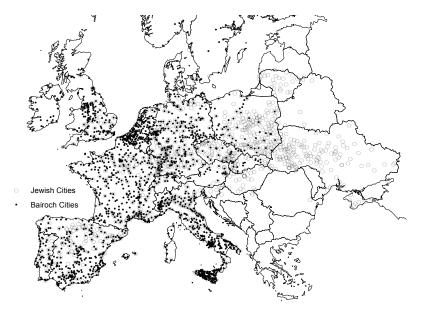
- Market integration between 1500-1800 has been widely studied as a
 potential driver of urbanization and subsequent economic growth.
- Numerous studies use law of one price to test level of market integration (e.g Shiue and Keller, 2007; Bateman, 2011; Chilosi et al., 2013).
- But extensive data only exists for widely traded staples such as grain.
- Jewish merchants were active in luxury trade, especially in the Levantine trade (spices, silk, cotton), and in Atlantic trade (sugar, tobacco, rum, silver) and in finance and banking.
- In particular, Sephardic Jews were extremely prominent in international trade during the early modern period.

DATA

We use two primary datasets:

- Information on the presence of Jewish communities at cityXyear level collected from the *Encyclopedia Judaica*. Same data used in Anderson, Johnson and Koyama (Forthcoming). We extend this dataset to 1850.
- City size data from Bairoch (1988) from 1400 to 1850. city populations in 1400, 1500, 1600, 1700, 1750, 1800, and 1850. 1,752 cities total.

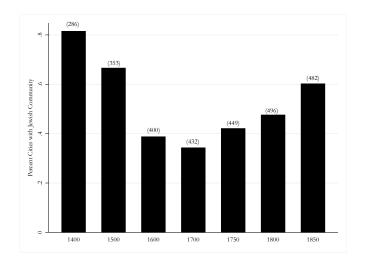
We complement these with time-varying data on expulsions and pogroms from Anderson, Johnson and Koyama (Forthcoming) and with numerous time-invariant variables collected for Jedwab, Johnson and Koyama (2015).


DATA: MATCHING JEWISH CITIES TO BAIROCH POPULATION CITIES

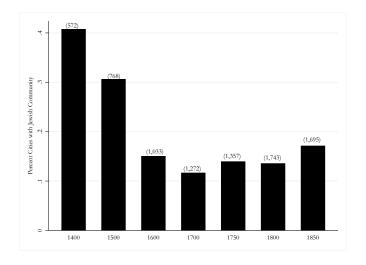
- For each city recorded with a Jewish community we create a list of cities in the Bairoch dataset within 15km.
- We then inspect each of these city pairs to determine if the Bairoch city matches the city listed as having a Jewish community.
- Challenges include: (1) Suburbs, (2) How should we treat unmatched Bairoch cities?
 Assume no Jewish community?

Vincent Van Gogh - Le Moulin de la Galette

JEWISH CITIES AND BAIROCH CITIES, 1400-1850



DATA: MAIN AND EXTENDED SAMPLE


- We end up with two samples:
 - ◆ The Main Sample this consists of 493 cities total, includes only the Bairoch cities for which we have perfect matches with Jewish communities. It is a more valid sample because all the cities are 'the kind of cities that might have Jewish communities'.
 Restricted Descriptive Statistics
 - ② The Extended Sample this consists of both the matched cities and the Bairoch cities for which we don't find a match (1,711 cities total). We assume if there is no Jewish City matched to the Bairoch city, then it never had a Jewish community. This sample is less valid, but allows us to describe more general results.

 Extended Descriptive Statistics

DESCRIPTIVE STATISTICS FOR MAIN SAMPLE, 1400-1850

DESCRIPTIVE STATISTICS FOR EXTENDED SAMPLE, 1400-1850

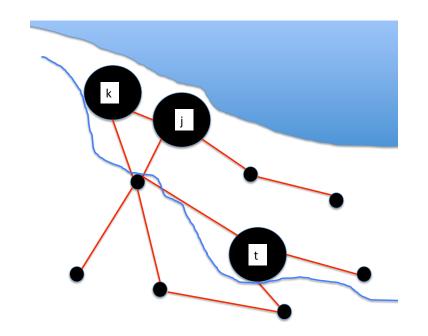
EMPIRICAL SPECIFICATION

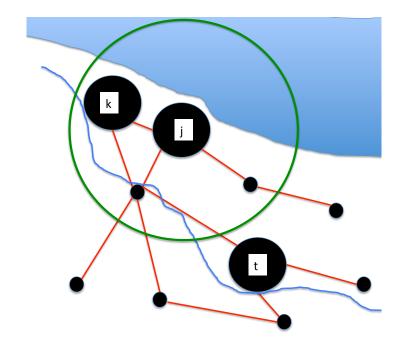
We estimate the following difference-in-differences specification:

Log Population_{i,t} =
$$\beta$$
Jewish Community_{i,t} + $\sum_{t=1500}^{1850} \mathbf{X}_i' \mu_t + \delta_i + \eta_t + \varepsilon_{i,t}$. (1)

- Jewish Community_{i,t} is a dummy = 1 if there was a Jewish community in city i during the time period preceding year t.
- X is a vector of city-level time invariant variables interacted with year dummies that control for geography (cereal suitability, proximity to rivers, proximity to coast), local infrastructure (distance to medieval trade route), and human capital (universities).
- Regressions also include city and year fixed effects.
- We report results for the both the Main and Extended samples.

BASELINE ESTIMATES USING MAIN AND EXTENDED SAMPLES

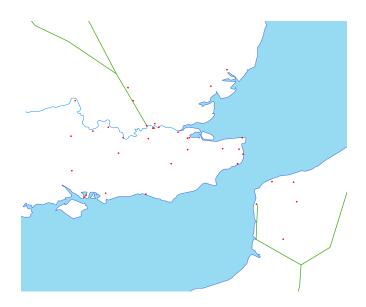

	Dependent Variable: Log City Population						
	Main Sample			Extended Sample			
	(1)	(2)	(3)	(4)	(5)	(6)	
Jewish Community	0.175***	0.273***	0.350***	0.625***	0.641***	0.302***	
	(0.0399)	(0.0379)	(0.0455)	(0.0307)	(0.0305)	(0.0430)	
Year FE's	Yes	Yes	Yes	Yes	Yes	Yes	
Controls X Year FE's	No	Yes	Yes	No	Yes	Yes	
City FE's	No	No	Yes	No	No	Yes	
N	2898	2898	2898	8440	8440	8440	
R-sq	0.0888	0.212	0.471	0.156	0.222	0.445	


CREATING THE IV: JEWISH NETWORK ACCESS

• We build on the *Market Access* literature. For example, see 'Railroads of the Raj' (Donaldson (2016)).

• We assume:

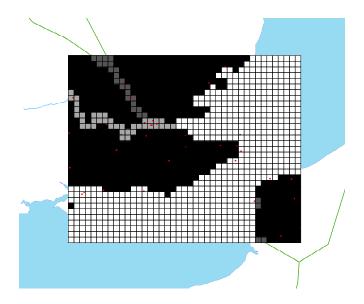
- A Jewish community is more likely to be established close to another Jewish community (e.g. because of trade networks, financial relationships, cultural linkages, or other spatial externalities).
- 2 'Close' is defined as the least cost travel path.
- Unobservable characteristics of the cities in which the communities are located become less correlated the further they are from each other.

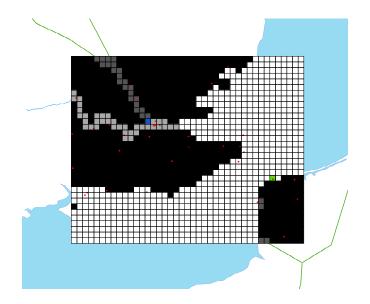

CREATING THE IV: JEWISH NETWORK ACCESS

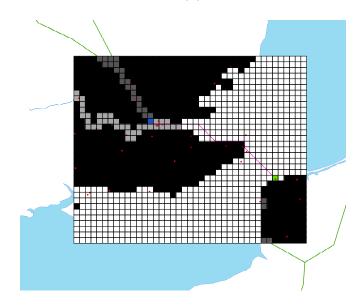
• Jewish Network Access for city *j* is defined as:

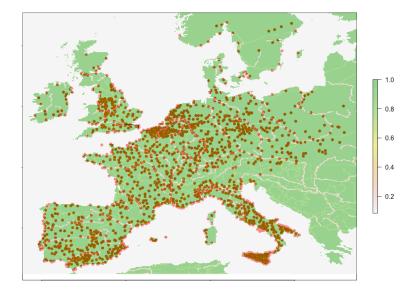
$$NA_{jt} = \sum_{i \neq j} JC_{it} \tau_{ji}^{-\sigma} \tag{2}$$

- where JC_i is a dummy variable for city i taking a value of 1 if a Jewish community is located in it in time period t, τ_{ji} is the cost of travel between cities j and i, and σ is a trade elasticity (we experiment with various values and choose $\sigma = 1$).
- The average cost of transport per km/ton expressed in terms of cereals in the early 20th century was: 8.8 k.g for porters, 3.9 for transportation by cart, 0.99 for river transport, and 0.3-0.4 kg for sea transport (Bairoch, 1990, 141). We normalize these costs so that porter transport = 1.
- Where does τ_{ji} , or, 'travel cost' come from? We combine tools in ArcGIS and R (gdistance package) to create it.


START WITH VECTOR DATA CONTAINING CITIES, RIVERS, SEAS, AND TRADE ROUTES...


SUPERIMPOSE A 5KM X 5KM GRID...


TRANSFORM INTO A RASTER TAKING VALUE OF LEAST COST TRANSPORT FOR EACH GRID...


CHOOSE TWO CITIES: LONDON AND CALAIS...

APPLY DIJKSTRA'S ALGORITHM TO IDENTIFY LEAST COST PATH AND COST OF TAKING LEAST COST PATH (τ) ...

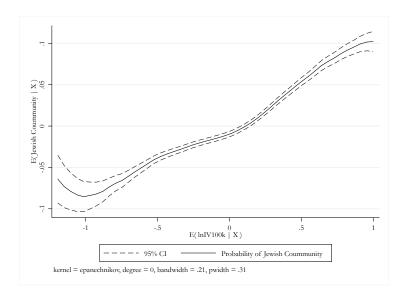
RINSE AND REPEAT 1,603,840 TIMES...

CREATING THE IV'S

• Recall that:

$$NA_{jt} = \sum_{i \neq j} JC_{it} \tau_{ji}^{-\sigma} \tag{3}$$

- We create two sets of IV's based on the Jewish Network Access variable.
 - The Jewish Network IV's
 - 2 The Expulsions IV's

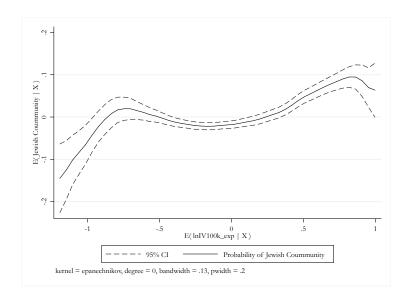

THE JEWISH NETWORK IV'S

• Recall that:

$$NA_{jt} = \sum_{i \neq j} JC_{it} \tau_{ji}^{-\sigma} \tag{4}$$

- The Jewish Network IV for city j is defined as IVNetwork $_{jt} = NA_{jt} \Big|_{i > Dkm}$.
- In this way we will be only be predicting the presence of a Jewish community in city j based on the network of Jewish cities that are more than D kilometers away. Since it is likely that any unobserved variables correlated with both the growth of city j and Jewish presence in city j will be uncorrelated with Jewish presence in city j that is \hat{D} kilometers away, then this is a potentially valid instrument.
- We create the instrument for *Dkm*=0, 50, 100, 250, and 500.

Relevance of the Jewish Network IV with D=100km


THE EXPULSIONS IV'S

 To construct the Expulsions IV we reconstruct the Jewish Network variable but weight by Expulsion_{it} = 1 if there was an expulsion in city i in the period before year t. Then the Expulsions Network variable becomes...

$$EN_{jt} = \sum_{i \neq j} \text{Expulsion}_{it} \tau_{ji}^{-\sigma}$$
 (5)

- Our time varying instrument is defined as IVExpulsion_{jt} = EN_{jt} | $_{i>Dkm}$.
- Assumes that expulsions of Jews that happen more than D̂ kilometers
 away are uncorrelated with other factors driving growth in city j.
 Relevance comes from the exogenous 'push' of expelled Jews towards city
 j combined with the 'pull' of city j being on a relatively short least cost
 travel path to the city from which the Jews are expelled.

Relevance of the Jewish Expulsions IV with D=100km

IV REGRESSIONS, 1400-1850

		Dependent Variable: Log City Population						
	Panel A: Jewish Network IV							
	(1)	(2)	(3)	(4)	(5)			
	All Cities	>50km	>100km	>250km	>500km			
Jewish Community	0.467***	0.467***	0.491***	0.522***	0.348			
,	(0.0615)	(0.0643)	(0.0695)	(0.100)	(0.367)			
Year FE's	Yes	Yes	Yes	Yes	Yes			
Controls X Year FE's	Yes	Yes	Yes	Yes	Yes			
City FE's	Yes	Yes	Yes	Yes	Yes			
N	2889	2889	2889	2889	2889			
First Stage F-stat	677.05	676.60	540.73	179.84	11.84			
	Panel B: Expulsions IV							
	(1)	(2)	(3)	(4)	(5)			
	All Cities	>50km	>100km	>250km	>500km			
Jewish Community	0.125	0.381**	0.864***	2.777***	-0.755			
	(0.165)	(0.172)	(0.255)	(0.918)	(0.503)			
Year FE's	Yes	Yes	Yes	Yes	Yes			
Controls X Year FE's	Yes	Yes	Yes	Yes	Yes			
City FE's	Yes	Yes	Yes	Yes	Yes			
N	2889	2889	2889	2889	2889			
First Stage F-stat	51.78	48.36	28.40	9.51	11.17			

ROBUSTNESS: ADDITIONAL CONTROLS

	(1)	(2)	(3)	(4)	(5)
_	Potato	Atlantic Cities	Market Access	Persecutions	BD Mortality
$oldsymbol{eta}_{ ext{OLSMain}}$	0.347***	0.341***	0.275***	0.383***	0.353***
	(0.0450)	(0.0464)	(0.0455)	(0.0512)	(0.0457)
$oldsymbol{eta}_{ ext{OLSExtended}}$	0.301***	0.292***	0.237***	0.370***	0.311***
	(0.0426)	(0.0431)	(0.0418)	(0.0509)	(0.0432)
$eta_{IV100km}$	0.578***	0.456***	0.242***	0.586***	0.529***
	(0.0858)	(0.0696)	(0.0865)	(0.0943)	(0.0782)
$oldsymbol{eta}_{ extsf{IVExp_100k}}$	0.993***	0.839***	0.672**	1.675**	0.989***
, , ,	(0.365)	(0.233)	(0.296)	(0.784)	(0.325)
N_{Main}	2898	2898	2898	2898	2898
N_{Extended}	8440	8440	8440	8440	8440

MARKET ACCESS

- Another important determinant of urban development which economists emphasize is market access (Marshall, 1890; Harris, 1954; Fujita et al., 2001; Donaldson, 2016).
- Market access is calculated as:

Market
$$Access_{jt} = \sum_{i \neq j} Population_{it} \tau_{ji}^{-\sigma}$$
 (6)

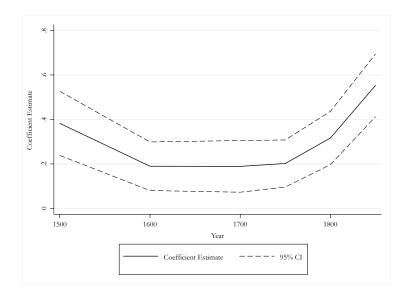
- Where Population_{it} is simply the population of city *i* in year *t*.
- Given the size of the IV coefficients, especially for the Expulsions IV, we
 are worried that we may be violating the exclusion restriction. Perhaps
 market access is correlated through distinct channels to both Jewish
 Community and Population.
- When we control for market access in our regressions, the IV coefficients on Jewish Community suggest that cities with Jewish residents grew between 24% and 67% faster than comparable cities with no Jewish presence.

ROBUSTNESS: ADDITIONAL CONTROLS

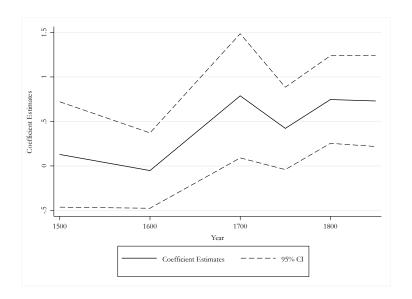
	(6)	(7)	(8)	(9)	(10)
_	Years Jewish	Zero Pop=500	Solow Spec.	1200- Sample	Cluster Country
$oldsymbol{eta}_{ ext{OLSMain}}$	0.405***	0.368***	0.0866***	0.356***	0.350**
	(0.0507)	(0.0460)	(0.0182)	(0.0486)	(0.124)
$oldsymbol{eta}_{ ext{OLSExtended}}$	0.356***	0.320***	0.155***	0.306***	0.302**
	(0.0476)	(0.0432)	(0.0151)	(0.0447)	(0.109)
$oldsymbol{eta}_{IV100km}$	0.586***	0.562***	0.371***	0.540***	0.491**
	(0.0828)	(0.0773)	(0.0594)	(0.0644)	(0.216)
eta_{IVExp_100k}	0.977***	0.632*	0.429***	0.252	0.864**
	(0.297)	(0.329)	(0.0876)	(0.214)	(0.394)
N_{Main}	2898	3507	2647	3282	2898
N_{Extended}	8440	12544	7101	9080	8440

ROBUSTNESS: ADDITIONAL CONTROLS

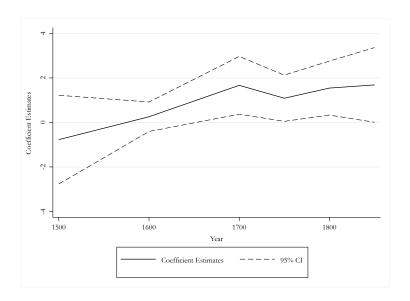
	(11)	(12)	(13)	(14)	(15)
	Cities 1400	Cities 1500	Cities 1600	Cities 1700	Drop UK
$oldsymbol{eta}_{ ext{OLSMain}}$	0.353***	0.355***	0.356***	0.363***	0.228***
	(0.0538)	(0.0493)	(0.0481)	(0.0470)	(0.0438)
$oldsymbol{eta}_{ ext{OLSExtended}}$	0.307***	0.307***	0.314***	0.313***	0.188***
	(0.0505)	(0.0465)	(0.0454)	(0.0443)	(0.0383)
$oldsymbol{eta}_{ extsf{IV}100km}$	0.439***	0.459***	0.495***	0.495***	0.196**
	(0.0801)	(0.0678)	(0.0686)	(0.0692)	(0.0836)
$oldsymbol{eta_{IVExp_100k}}$	1.078***	0.912***	0.957***	0.959***	0.570**
	(0.366)	(0.259)	(0.280)	(0.284)	(0.239)
$N_{ ext{Main}}$ $N_{ ext{Extended}}$	1953	2349	2564	2694	2652
	3850	5002	6272	7201	7636

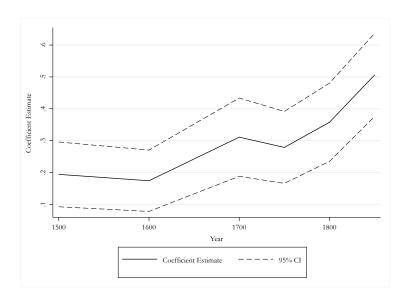

ROBUSTNESS: ADDITIONAL CONTROLS

	(16)	(17)	(18)	(19)	(20)
_	Drop NLD	Drop France	Drop Germany	Drop Italy	Drop Spain
$oldsymbol{eta}_{ ext{OLSMain}}$	0.355***	0.399***	0.426***	0.337***	0.307***
	(0.0464)	(0.0536)	(0.0521)	(0.0509)	(0.0437)
$oldsymbol{eta}_{ ext{OLSExtended}}$	0.299***	0.344***	0.351***	0.307***	0.272***
	(0.0435)	(0.0502)	(0.0499)	(0.0490)	(0.0425)
$oldsymbol{eta}_{IV100km}$	0.542***	0.627***	0.540***	0.432***	0.485***
	(0.0802)	(0.0725)	(0.0656)	(0.0843)	(0.0777)
$oldsymbol{eta}_{ extit{IVExp_100k}}$	1.061***	1.023***	0.694***	0.878***	1.112**
	(0.318)	(0.274)	(0.199)	(0.272)	(0.436)
$N_{ ext{Main}}$ $N_{ ext{Extended}}$	2835	2349	2199	2428	2527
	8128	6960	7111	6641	7239


FLEXIBLE REGRESSIONS: JEWISH CITY DIVERGENCE AFTER 1600

	Dependent Variable: Log City Population					
			Main Sample			Extended Sample
	(1)	(2)	(3)	(4)	(5)	(6)
	OLS	IV100k	IVExp_100k	IV100k	IVExp_100k	OLS
Jewish Community X 1500	0.382***	0.080	-0.973	0.129	-0.773	0.194***
	(0.074)	(0.308)	(1.147)	(0.302)	(1.017)	(0.052)
Jewish Community X 1600	0.190***	0.064	0.356	-0.052	0.256	0.174***
	(0.056)	(0.208)	(0.308)	(0.216)	(0.338)	(0.049)
Jewish Community X 1700	0.189***	0.999***	1.878***	0.788**	1.668**	0.311***
	(0.059)	(0.342)	(0.663)	(0.356)	(0.662)	(0.063)
Jewish Community X 1750	0.202***	0.599***	1.287***	0.422*	1.088**	0.279***
	(0.054)	(0.222)	(0.488)	(0.236)	(0.530)	(0.058)
Jewish Community X 1800	0.317***	0.991***	1.794***	0.746***	1.545**	0.358***
	(0.061)	(0.231)	(0.613)	(0.251)	(0.619)	(0.063)
Jewish Community X 1850	0.553***	1.236***	2.079***	0.730***	1.686**	0.506***
	(0.072)	(0.205)	(0.792)	(0.261)	(0.856)	(0.067)
Control for Market Access	No	No	No	Yes	Yes	No
Year FE's	Yes	Yes	Yes	Yes	Yes	Yes
Controls X Year FE's	Yes	Yes	Yes	Yes	Yes	Yes
City FE's	Yes	Yes	Yes	Yes	Yes	Yes
N	2898	2889	2889	2889	2889	8440


FLEXIBLE REGRESSIONS: MAIN SAMPLE OLS, 1400-1850


FLEXIBLE REGRESSIONS: JEWISH NETWORK IV, 1400-1850

FLEXIBLE REGRESSIONS: EXPULSIONS IV, 1400-1850

FLEXIBLE REGRESSIONS: EXTENDED SAMPLE OLS, 1400-1850

MECHANISMS

- Sephardic Communities
- Hebrew Printing Press
- Port Jewish Cities
- Market Access
- Emancipation

MECHANISMS: SEPHARDIC COMMUNITIES

- Israel (2005, 11) argues that the Sephardic diaspora created 'a new phenomenon ... a new type of Jewish commercial system' that was based not on local markets, or on trade in agricultural products but on the transportation of luxury goods over long distances.
- Trivellato (2009) argues that the Sephardic diaspora was remarkable for its 'geographical breadth' and 'stability' and that '[o]ther branches of the Jewish diaspora could not count on the same geographical dispersion or interconnectedness' (Trivellato, 2009, 149).
- Sephardic Jews formed a network of interconnected merchants tied together 'on the basis of implicit contracts with blood-kin and in-law'.
 Sephardic merchants formed long-lasting partnerships and employed long distance agency relationships relying on both formal courts and on reputation-based mechanisms of the kind that Greif (1992, 2006) studied

MECHANISMS: SEPHARDIC COMMUNITIES, 1400-1850

	(1)	(2)
	OLS	<i>IV100k</i>
Jewish Community	0.311*** (0.0443)	0.465*** (0.0722)
SephardicXJewishComm	0.482** (0.205)	0.375*** (0.136)

MECHANISMS: SEPHARDIC COMMUNITIES, 1750-1850

	(1)	(2)
	OLS	IV100k
Jewish Community	0.135*** (0.0513)	2.398*** (0.589)
SephardicXJewishComm	-0.456*** (0.142)	-2.181*** (0.511)

MECHANISMS: HEBREW PRINTING PRESS

- To explore evidence of a cultural mechanism we collect data on the existence of Jewish printing presses based on Beinart (1992).
- Historical literature suggests that the existence of a Hebrew printing was a measure of cultural interaction between Jews and Christians (see Burnett, 1998).

MECHANISMS: HEBREW PRINTING PRESS, 1400-1850

	(3)	(4)
	OLS	IV100k
Jewish Community	0.349*** (0.0457)	0.498*** (0.0712)
HebrewPressXJewishComm	-0.114 (0.197)	-0.571** (0.264)
Hebrew Press	0.518* (0.274)	0.776*** (0.264)

MECHANISMS: HEBREW PRINTING PRESS, 1750-1850

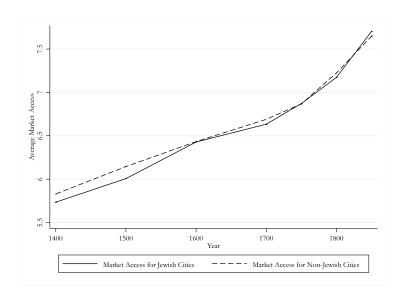
	(3)	(4)
	OLS	IV100k
Jewish Community	0.123** (0.0520)	2.496*** (0.640)
HebrewPressXJewishComm	-0.0330 (0.174)	-0.722 (0.814)

MECHANISMS: PORT CITIES AND PORT JEWS

- Historians refer to 'port Jews' to describe maritime Jewish communities that flourished in early modern cities such as Livorno, Trieste, Amsterdam, and London (Cesarani, 2001; Dubin, 2001, 2006; Sorkin, 2001)
- These communities tended to offer great religious freedom to Jewish communities.

MECHANISMS: PORT CITIES AND PORT JEWS, 1400-1850

	(5)	(6)
	OLS	IV100k
Jewish Community	0.316*** (0.0464)	0.603*** (0.157)
PortJewXJewishComm	0.444*** (0.145)	-1.000 (1.321)

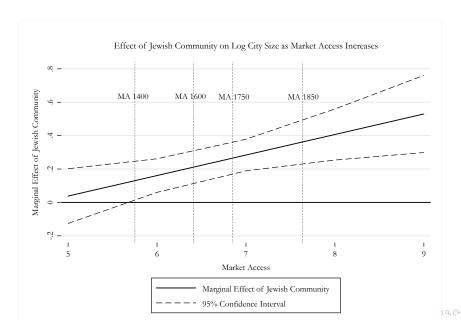

MECHANISMS: PORT CITIES AND PORT JEWS, 1750-1850

	(5)	(6)
	OLS	IV100k
Jewish Community	0.127** (0.0504)	4.238 (3.196)
PortJewXJewishComm	-0.0674 (0.148)	-8.560 (12.94)

MECHANISMS: MARKET ACCESS

- The historical literature points to the importance of Jewish trading and financial networks.
- Economic historians have conducted numerous studies of market integration during the early modern period, with a few exceptions these have focused on the grain trade with little systematic study of other markets due to data limitations (Bateman, 2011; Chilosi et al., 2013; Clark, 2015).
- Jewish merchants in medieval and early modern Europe, however, did
 not play a prominent role in the grain trade but, rather, were involved in
 the transport of diamonds, sugar, silks, tobacco, and other luxury
 products in addition to playing a large role in banking and finance.
- Therefore, rather than looking at grain markets, we explore a more general measure of market integration based on market access (Eaton and Kortum, 2002; Donaldson and Hornbeck, 2016; Storeygard, 2016; Donaldson, 2016).

MARKET ACCESS ON THE EXTENSIVE MARGIN


MECHANISMS: MARKET ACCESS, 1400-1850

	(9)	(10)
	OLS	IV100k
Jewish Community	-0.577* (0.299)	-3.523*** (0.655)
MarketAccessXJewishComm	0.123*** (0.0450)	0.542*** (0.0971)
Market Access	2.105*** (0.310)	2.012*** (0.294)

MECHANISMS: MARKET ACCESS, 1750-1850

	(7)	(8)
	OLS	IV100k
Jewish Community	-1.121*** (0.423)	-2.496* (1.451)
MarketAccessXJewishComm	0.164*** (0.0577)	0.415*** (0.157)
Market Access	2.520*** (0.291)	1.942*** (0.371)

Predicted Effect of Market Access on Growth for Jewish Cities, 1400-1850

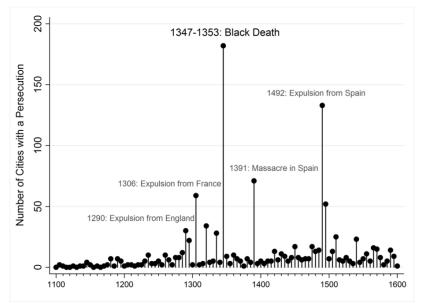
MECHANISMS: EMANCIPATION

- During the medieval and early modern period Jews faced limitations on range of economic activities they could engage in. This limited the ability of Jews to put their labor to its highest value use, prevented Jewish businesses from hiring non-Jewish workers, and prevented or limited Jews from attending universities.
- Beginning in the late eighteenth century, under the influence of Enlightenment thought, Jewish communities across Europe were granted economic and civic rights (or Emancipated).
- Habsburg Empire in 1782. France in 1791 and this policy was spread into those lands conquered by the Revolutionary and Napoleonic armies (Berkovitz, 1989; Acemoglu et al., 2010; Acemoglu, Cantoni, Johnson and Robinson, 2011, 111–114). Jews were granted rights in Prussia in 1812 and in Denmark in 1814.

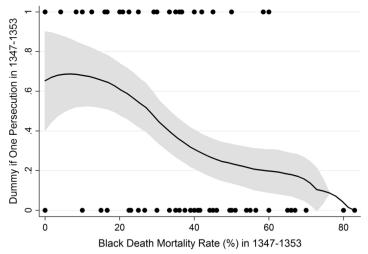
MECHANISMS: EMANCIPATION, 1400-1850

Dependent Variable: Log City Population

	(1)	(2)	(3)	(4)
	OLS	IV100k	OLS	IV100k
Jewish Community	0.248*** (0.0407)	0.440*** (0.0967)	0.245*** (0.0404)	0.405*** (0.0967)
EmancipationXJewishComm	0.332*** (0.0788)	1.078*** (0.394)	0.351*** (0.0845)	0.947*** (0.362)
Emancipation	0.0671 (0.0627)	-0.573* (0.306)	0.0786 (0.0646)	-0.430 (0.276)
No Habsburg Emancipation	No	No	Yes	Yes
Year FE's	Yes	Yes	Yes	Yes
Controls X Year FE's	Yes	Yes	Yes	Yes
City FE's	Yes	Yes	Yes	Yes
N	2898	2889	2898	2889
R-sq	0.485		0.485	

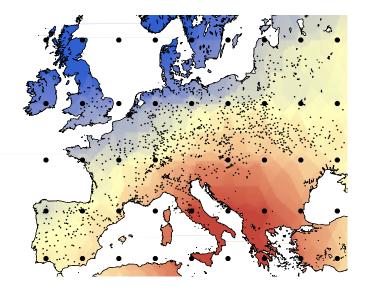

CONCLUSIONS

- Cities with Jewish communities grew faster than comparable cities without Jewish communities in Europe between 1400 and 1850.
- This growth advantage accelerated after 1600.
- We identify the causal effect of Jewish communities on city growth by creating an IV based on a spatial model of the Jewish network across Europe and exploiting 'nearby' expulsions.
- We provide evidence that cities with Jewish communities benefited more from market access on the intensive margin, but not on the extensive margin. Jewish communities were better able to translate greater potential market density into economic gains.
- We show that cities which emancipated Jewish communities grew faster.

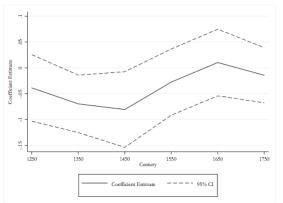

EXTENSIONS: RELIGIOUS TOLERANCE AND ECONOMIC DEVELOPMENT

- Black Death, Labour Scarcity and Jewish Persecutions (with Remi Jedwab and Mark Koyama)
- Temperature Shocks and Jewish Persecutions (with Mark Koyama)
- Book Project: The Birth of Religious Liberty (with Mark Koyama)

BLACK DEATH, LABOUR SCARCITY AND JEWISH PERSECUTIONS



BLACK DEATH, LABOUR SCARCITY AND JEWISH PERSECUTIONS


local polynomial smooth, kernel = epanechnikov, degree = 0, bandwidth = 10, pwidth = 6.78

TEMPERATURE SHOCKS AND JEWISH PERSECUTIONS

TEMPERATURE SHOCKS AND JEWISH PERSECUTIONS

Figure 4:
The Effect of Temperature on Persecution Probability Over Time

Notes. Plots coefficients estimate by century of the baseline DID regression. Specification discussed in the text.

BOOK PROJECT: THE BIRTH OF RELIGIOUS LIBERTY

The Birth of Religious Freedom: Liberalism, Rule of Law, and State Capacity, 1100–1800

Mark Koyama, assistant professor in the Economics Department and Mercatus Center Senior Scholar, will present the annual Fenwick Fellow Lecture on Wednesday, April 8, 2015 in 228 Gateway Library, Johnson Center at 2 p.m. He will present his findings on "The Birth of Religious Freedom: Liberalism, Rule of Law, and State Capacity, 1100–1800" which examined Western Europe as the birthplace of modern ideas of political freedom and religious toleration. His study used a combination of new historical data and approaches from modern political economy. Professor Koyama's research project was part of a larger endeavor, in collaboration with Professor Noel Johnson, Economics Department and Center for Study of Public Choice. They hope to publish the resulting monograph in 2016.

WEDNESDAY APRIL 8, 2015 2 p.m.

228 Gateway Library Johnson Center Fairfax Campus

JEWISH URBAN POPULATIONS

- Approximately: 2.5% of the population of the Netherlands, around 1% of the Habsburg empire, 0.6% of the population of Germany, 0.3% of the population of Britain and 0.16% of the population of France (Katz, 1974; Maddison, 2003).
- Among largest was in Amsterdam where Aschkenazim community was approximately 5,000 in 1674 or 2.5% of the total city population. By 1795 or approximately 10%.
- Frankfurt's community was 3,000 in 1610. Prague was 6,000 in 1600 and over 11,500 by 1702 (Bell et al., 2008, 36).
- At its peak Jewish pop of Venice was 4800. Most Italian communities numbered in the hundreds.

SPATIAL DISTRIBUTION OF JEWISH COMMUNITIES

- England after 1655 was the only European country where Jews were free to settle where they wished.
- In virtually all other places, restrictions on settlement. For example, Jews were excluded from Utrecht, Gouda, and Deventer (Katz, 1974, 10-12)
- 17th c French monarchy permitted Jews in regions conquered from Holy Roman Empire and allowed Sephardic communities in Bordeaux and Rouen, but not permitted to settle in Paris (Attali, 2010, 285)

RENT-SEEKING AND EXTRACTIVE INSTITUTIONS?

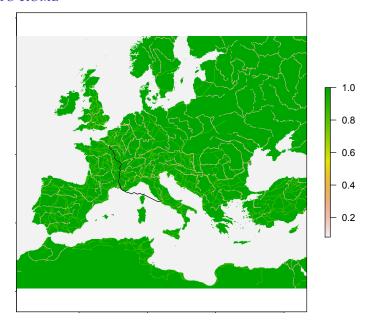
Illustration showing Jews receiving a charter of privileges from Emperor Henry VII in 1312. Source: Codex Baldvini; Koblenz, Municipal Archives.

Figure 3. A Jewish moneylender with his family in the background negotiating with a peasant and a townsman. A woodcut from Foltz, Die Rechnung Kolpergers von dem Gesuch der Juden. Nuremberg, 1491.

A Jewish money lender with his family in the background negotiating with a peasant and a townsman. Woodcut from Foltz: Die Rechnung Kolpergers von dem Gesuch der Juden – 'The billing of Kolpergers from the request of the Jews'. Nuremberg 1491

GENERALIZED TOLERANCE AND JEWISH PRESENCE IN CITIES

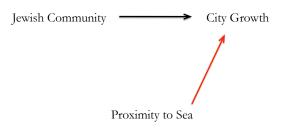
- West European society increasingly abandoned identity rules around the seventeenth century (Johnson and Koyama, 2015).
- Part of this meant that Jews were more welcome in places were Identity Rules were being abandoned towards the end of the early modern period.
- Also, the abandonment of *identity rules* meant that Jews were more mobile than previously.
- This could either mean that greater religious freedom generates growth and Jewish communities are simply a marker for those cities. Or, Jewish communities could be directly contributing to growth.
- Or, probably, both.

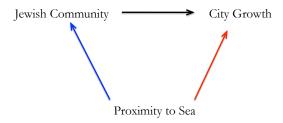

DESCRIPTIVE STATISTICS: MATCHED SAMPLE

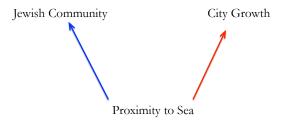
Variable		Mean	Std. Dev.	Min	Max	Observations
Jewish Community	overall between within	.5127674	.4999232 .3541913 .3705829	0 0 3443754	1 1 1.36991	N = 2898 n = 501 T-bar = 5.78443
Log Population	overall between within	2.326069	1.060052 .8371366 .6105844	0 .6931472 -1.011015	7.712444 6.080888 5.601595	N = 2898 n = 501 T-bar = 5.78443
Cereal Suitability	overall between within	4.603533	.6931208 .7073488 0	2.206897 2.206897 4.603533	7.229167 7.229167 4.603533	N = 2898 n = 501 T-bar = 5.78443
University Dummy	overall between within	.0565908	.2310988 .213777 0	0 0 .0565908	1 1 .0565908	N = 2898 n = 501 T-bar = 5.78443
Distance to Any Seas	overall between within	155625.6	141886.3 142704 0	59.27785 59.27785 155625.6	595701.6 595701.6 155625.6	N = 2898 n = 501 T-bar = 5.78443
Distance to Rivers	overall between within	43207.66	63046.33 62416.76 0	13.90545 13.90545 43207.66	424386.9 424386.9 43207.66	N = 2898 n = 501 T-bar = 5.78443
Distance to Medieval Road	overall between within	61806.81	87412.81 87291.18 0	0 0 61806.81	587681.3 587681.3 61806.81	N = 2898 n = 501 T-bar = 5.78443
lnIV100k	overall between within	2.564789	.3475631 .2407785 .2548653	1.544984 1.769223 2.044283	3.965279 3.361853 3.260309	N = 2898 n = 501 T-bar = 5.78443
lnIV100k_exp	overall between within	1367952	1.674243 .7032697 1.585774	-3.708967 -2.314129 -3.857035	3.12836 1.846383 2.804551	N = 2898 n = 501 T-bar = 5.78443
Market Access	overall between within	6.760998	.6861903 .4733557 .5593701	4.848538 5.752997 5.543598	9.571323 9.029807 8.042022	N = 2898 n = 501 T-bar = 5.78443

DESCRIPTIVE STATISTICS: FULL SAMPLE

Variable		Mean	Std. Dev.	Min	Max	Observations
Jewish Community	overall between within	.1760664	.3808992 .2984941 .2171272	0 0 6810765	1 1 1.033209	N = 8440 n = 1791 T-bar = 4.71245
Log Population	overall between within	1.94619	.90446 .6477614 .5491849	0 0 -1.390894	7.712444 6.080888 5.221716	N = 8440 n = 1791 T-bar = 4.71245
Cereal Suitability	overall between within	4.61671	.7978876 .8115572 0	1.826087 1.826087 4.61671	7.666667 7.666667 4.61671	N = 8440 n = 1791 T-bar = 4.71245
University Dummy	overall between within	.0194313	.1380433 .1150137 0	0 0 .0194313	1 1 .0194313	N = 8440 n = 1791 T-bar = 4.71245
Distance to Any Seas	overall between within	114603.8	128064.5 125425.4 0	0 0 114603.8	625888.1 625888.1 114603.8	N = 8440 n = 1791 T-bar = 4.71245
Distance to Rivers	overall between within	76661.34	105268.9 98839.89 0	13.90545 13.90545 76661.34	459098.5 459098.5 76661.34	N = 8440 n = 1791 T-bar = 4.71245
Distance to Medieval Road	overall between within	104706.5	139548 133667 0	0 0 104706.5	607741.8 607741.8 104706.5	N = 8440 n = 1791 T-bar = 4.71245
Market Access	overall between within	6.918485	.6762469 .4833272 .515232	4.848538 5.301613 5.701086	9.571323 9.029807 8.433955	N = 8440 n = 1791 T-bar = 4.71245


PARIS TO ROME




Jewish Community City Growth

Jewish Community City Growth

Proximity to Sea

- Abramitzky, Ran and Hanna Halaburda (2014), Were Jews in interwar Poland more educated? memo.
- Acemoglu, Daron, Davide Cantoni, Simon Johnson and James A. Robinson (2010), From ancien regime to capitalism: The spread of the French Revolution as a natural experiment, in J.Diamond and J. A.Robinson, eds, 'Natural Experiments of History', Harvard University Press, Cambridge, M.A.
- Acemoglu, Daron, Davide Cantoni, Simon Johnson and James A. Robinson (2011), 'The Consequences of Radical Reform: The French Revolution', American Economic Review 101(7), 3286–3307.
- Acemoglu, Daron, Tarek A. Hassan and James A. Robinson (2011), 'Social structure and development: A legacy of the Holocaust in Russia', The Quarterly Journal of Economics 126(2), 895–946.
- Anderson, R. Warren, Noel D. Johnson and Mark Koyama (Forthcoming), 'Jewish persecutions and weather shocks, 1100-1800', The Economic Journal.
- Ashraf, Quamrul and Oded Galor (2011), 'Dynamics and stagnation in the Malthusian epoch', American Economic Review 101(5), 2003–41.
- Attali, Jacques (2010), The Economic History of the Jewish People, ESKA Publishing Washington, Portland.
- Bairoch, Paul (1988), Cites and Economic Development, from the dawn of history to the present, University of Chicago Press, Chicago. translated by Christopher Braider.
- Baron, Salo W. (1967a), A Social and Religious History of the Jews, Vol. XI: Citizen or Alien Conjurer, Columbia University Press, New York.
- Baron, Salo W. (1967b), A Social and Religious History of the Jews, Vol. XII: Economic Catalyst, Columbia University Press. New York.
- Baron, Salo W. (1975), Economic History of the Jews, Keter Publishing House, Jerusalem. edited by Nachum Gross.
- Bateman, Victoria N. (2011), 'The evolution of markets in early modern Europe, 1350–1800: a study of wheat prices', The Economic History Review 64(2), 447–471.
- Beinart, Haim (1992), Atlas of Medieval Jewish History, Hendrickson Publishers, London.
- Bell, Adrian R., Chris Brooks and Tony Moore (2008), Interest in medieval accounts: Examples from England, 1272-1340. ICMA Centre Discussion Papers in Finance DP2008-07.
- Berkovitz, Jay A. (1989), The Shaping of Jewish Identity in Nineteenth-century France, Wayne State University Press, Detroit.
- Bosker, Maarten, Eltjo Buringh and Jan Luiten van Zanden (2013), 'From Baghdad to London: unravelling urban development in Europe and the Arab world 800-1800', Review of Economics and Statistics Forthcoming.
- Botticini, Maristella and Zvi Eckstein (2005), 'Jewish occupational selection: Education, restrictions, or minorities',

 | Journal of Economic History 65, 922–948.

- Botticini, Maristella and Zvi Eckstein (2007), 'From farmers to merchants, conversions and Diaspora: Human capital and Jewish history', *Journal of the European Economic Association* **5**(5), 885–926.
- Botticini, Maristella and Zvi Eckstein (2012), The Chosen Few, Princeton University Press, Princeton, New Jersey.
- Braudel, Fernand (1979, 1982), The Wheels of Commerce, Phoenix Press, London.
- Burnett, Stephen G. (1998), The Regulation of Hebrew Printing in Germany, 1555-1630: Confessional Politics and the Limits of Jewish Toleration, in M.Reinhart and T.Robisheaux, eds, 'Infinite Boundaries: Order, Disorder, and Reorder in Early Modern German Culture', Truman State University Press, Kirksville, MO, pp. 329–348.
- Cesarani, David (2001), 'Port Jews: Concepts, cases and questions', Jewish Culture and History 4(2), 1-11.
- Chazan, Robert (2006), The Jews of Western Christendom, Cambridge University Press, Cambridge.
- Chazan, Robert (2010), Reassessing Jewish Life in Medieval Europe, Cambridge University Press, Cambridge.
- Chilosi, David, Tommy E. Murphy, Roman Studer and A. Coükun Tunßer (2013), 'Europe's many integrations: Geography and grain markets, 1620–1913', Explorations in Economic History 50(1), 46 – 68.
- Clark, Gregory (2015), 'Markets before economic growth: the grain market of medieval England', Cliometrica, Journal of Historical Economics and Econometric History 9(3), 265–287.
- Davis, Donald R. and Jonathan I. Dingel (2012), A Spatial Knowledge Economy, NBER Working Papers 18188, National Bureau of Economic Research. Inc.
- Davis, Donald R. and Jonathan I. Dingel (2014), The Comparative Advantage of Cities, NBER Working Papers 20602, National Bureau of Economic Research, Inc. URL: https://dieas.revec.org/bin/breruo/20602.html
- De Long, J. Bradford and Andrei Shleifer (1993), 'Princes and merchants: European city growth before the industrial revolution', Journal of Law & Economics 36(2), 671–702.
- de Vries, Jan (1976), Economy of Europe in an Age of Crisis, Cambridge UP, Cambridge, U.K.
- Dincecco, Mark and Massimiliano Gaetano Onorato (2015), Military conflict and the rise of urban Europe.
- Dittmar, Jeremiah E. (2011), 'Information technology and economic change: The impact of the printing press', *The Quarterly Journal of Economics* **126**(3), 1133–1172.
- Donaldson, Dave (2016), 'Railroads of the Raj: Estimating the impact of transportation infrastructure', American Economic Review .
- Donaldson, David and Richard Hornbeck (2016), 'Railroads and American economic growth: A "mark access" approach', Quarterly Journal of Economics Forthcoming.
- Dubin, Lois (2001), 'Researching Port Jews and Port Jewries: Triest and Beyond', Jewish Culture and History 4(2), 47–58.

- Dubin, Lois (2006), 'Introduction: Port Jews in the Atlantic world Jewish History', Jewish History 20, 117–127.
- Eaton, Jonathan and Samuel Kortum (2002), 'Technology, geography, and trade', Econometrica 70(5), 1741–1779.
- Fujita, Masahisa, Paul R Krugman and Anthony Venables (2001), The spatial economy: Cities, regions, and international trade, MIT press.
- Glaeser, Edward L and David C Mare (2001), 'Cities and Skills', Journal of Labor Economics 19(2), 316-42.
- Greif, Avner (1992), 'Institutions and international trade: Lessons from the commercial revolution', American Economic Review 82(2), 128–33.
- Greif, Avner (2006), Institutions and the Path to the Modern Economy, Cambridge University Press, Cambridge, U.K.
- Harris, Chauncy D (1954), 'The, market as a factor in the localization of industry in the United States', Annals of the association of American geographers 44(4), 315–348.
- Hornung, Erik (2014), 'Immigration and the Diffusion of Technology: The Huguenot Diaspora in Prussia', American Economic Review 104(1), 84–122.
- Israel, Jonathan (2005), Disporas Jewish and Non-Jewish in the world maritime empires, in I. B.McCabe, G.Harlaftis and I. P.Minoglou, eds, 'Dispora Entrepreneurial Networks: Four Centuries of History', Berg, New York, pp. 3–27.
- Jedwab, Remi, Noel D. Johnson and Mark Koyama (2015), Bones, bacteria, and break points: The heterogeneous effects of the Black Death and long-run growth.
- Johnson, Noel D. and Mark Leo Koyama (2015), The Birth of Religious Freedom: Liberalism, Rule of Law, and State Capacity, 1100-1800.
- Katz, Jacob (1974), Out of the Ghetto, Harvard University Press, Cambridge, MA.
- Koyama, Mark (2010), 'The political economy of expulsion: The regulation of Jewish moneylending in medieval England', Constitutional Political Economy 21(4), 374–406.
- Kuznets, Simon (1960), Economic structure and life of the Jews, in L.Finkelstein, ed., 'The Jews: Their History, Culture, and Religion', Jewish Publication Society of America, Philadelphia, pp. 1597–1666.
- Maddison, Angus (2003), The World Economy: Historical Statistics, OECD, Paris, France.
- Marshall, Alfred (1890), Principles of Economics, Macmillan.
- McCloskey, Deirdre N. (2010), Bourgeois Dignity: Why Economics Can't Explain the Modern World, University of Chicago Press, Chicago.
- Mokyr, Joel (2009), The Enlightened Economy, Yale University Press, New Haven.
- Nunn, Nathan and Nancy Qian (2011), 'The potato's contribution to population and urbanization: Evidence from a historical experiment', The Quarterly Journal of Economics 126(2), 593–650.

Shiue, Carol H. and Wolfgang Keller (2007), 'Markets in China and Europe on the eve of the industrial revolution', American Economic Review 97(4), 1189–1216.

Sombart, Werner (1962, 1911), The Jews and Modern Capitalism, Collier Books, New York. translated by M. Epstein.

Sorkin, David (2001), 'Port Jews and the three regions of emancipation', Jewish Culture and History 4(2), 31-46.

Storeygard, Adam (2016), 'Farther on down the road: transport costs, trade and urban growth in sub-Sharan Africa', Review of Economic Studies .

Tabellini, Guido (2008), 'Presidential address institutions and culture', Journal of the European Economic Association 6(2-3), 255–294.

Trivellato, Francesca (2009), The Familiarity of Strangers, Yale University Press, New Haven.

Weber, Max (1922, 1968), Economy and Society, Bedminster, New York.

Weber, Max (1930), The Protestant Ethic and the Spirit of Capitalism, Allen and Unwin, London, U.K.